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Abstract

The world’s population is rising every year. In order to meet the
demands of a still expanding human population, global crop production needs to
double by 2050; though, current estimates are far below what is needed (Ray DK
et al., 2013). Plant diseases, insects and weeds are decreasing the production of
crops global by 36%, and diseases alone have been shown to reduce crop yields
by 14% (Agrios GN., 2005). As result, the control of plant diseases contributes to
increased crop production. Among plant diseases, soil-borne diseases are
considered to be more restrictive than seed-borne and air-borne diseases in the
production of several crops and account for 10–20% of yield losses annually
(USDA., 2003).
Keywords: Biofumigation, Biological control, Degradation, Resistance,

Solarization.
Introduction

Elphinstone et al (2005), extensively compiled the bacterial wilt in and
different studies have since been carried out on this topic. Based on their
scientific and economic importance in plant diseases, the top ten bacterial
species have been listed as: (i) X. axonopodis pathovars, (ii) Erwinia amylovora,
(iii) Agrobacterium tumifaciens, (iv) Xanthomonas oryzae pv. oryzae, (v) X.
campestris pathovars, (vi) Xylella fastidiosa, (vii) Dickeya (former Erwinia)
(dadantanii and solani), (viii) Pectobacterium (former Erwinia) carotovorum (ix)
Pseudomonas syringae pathovars and (x) Ralstonia solanacearum, (Mansfied et
al., 2012). R. solanacearum (Smith) Yabuuchi et al. (1995) (syn. Pseudomonas
solanacearum [Smith], Burkholderia solanacearum [Smith]) causes a vascular
wilt disease and has been ranked as the second most significant bacterial
pathogen. It is one of the most destructive pathogens recognized to date
because it induces rapid and fatal wilting symptoms in host plants. The host
amplitude is extensively wide, more than 200 species, and the pathogen is
distributed worldwide and induces a destructive economic impact (Kelman A.,
1998).
Aim of the study

In the present study attempts were control to bacterial wilt diseases and
yield loss of groundnut in different growing areas. Find out different methods to
control bacterial wilt pathogens.
Material and Methods

Management with biological, physical and cultural methods of bacterial
wilt have been investigated for decades. We in this discussed the following
points, (i) methods used to control bacterial wilt and (ii) how these methods are
useful for improving crop production through the suppression of bacterial wilt.
1. Biological methods:
Biological Control Agents (BCAs)

Interest in biological control has increased due to concerns in excess of
the general use of chemicals (Whipps J., 2001). The profit of biological control
agents are (1) potentially self-sustaining, (2) spread on their own after initial
establishment, (3) reduced input of non-renewable resources, and (4) long-term
disease suppression in an environmentally friendly manner (Quimby FC., et al
2002). The methodology adopted by BCAs is followed by various interactions
such as competition for antibiosis, parasitism, nutrients, space and induced
systemic resistance (Agrios GN., 2005). Our reference survey exposed that
BCAs have been dominated by bacteria (90%) and fungi (10%). Montesinos
(2003) found that mainly patented BCAs are made of bacteria. Previous studies
showed the potential value of several promising BCAs, which are dominantly
avirulent strains of R. solanacearum and Pseudomonas spp., followed by
Streptomyces spp., Bacillus spp. and the other species, in controlling bacterial
wilt disease.
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A total of 109 strains of endophytic or rhizobacteria were in recent times
screened for their antibacterial activities against R. solanacearum, and effectual
isolates (a total of 22) consisted of Pseudomonas spp. (18 isolates) and Bacillus
sp. (2 isolates) (Ramesh R., 2012). Huang et al. (2013) exposed that isolates
diseased plants from the rhizosphere performed better in falling disease
incidence that those of healthy plants. In their study, the biocontrol efficacies of
the antagonists were connected to root colonizing capacities, but not with
antibiosis in vitro, suggesting that root colonizing capacity may play a key role in
disease suppression.

Organic Matter Organic amendments of the soil have direct impacts on plant health and crop
productivity. They are beneficial because they improve the biological, physical,
chemical and biological properties of soil, which can have positive effects on
plant growth (Bailey KL. et al., 2003). The degradation of organic matter in soil
can directly affect the viability and survival of a pathogen by restricting available
nutrients and releasing natural chemical substances with unreliable inhibitory
properties (Bailey KL. et al., 2003). Carbon released during the degradation of
organic matter contributes to increasing soil microbial activity and thus enhances
the likelihood of competition effects in the soil (Bailey KL. et al., 2003). Organic
amendments to soil have been shown to arouse the activities of microorganisms
that are antagonistic to pathogens (Akhtar M and Malik A., 2000). In addition,
organic amendments often contain biologically-active molecules such as
vitamins, growth regulators, and toxins, which are able to affect soil
microorganisms.

Review of Literature Plant residue controlling bacterial wilt
Several previous studies have reported that bacterial wilt was suppressed by
plant residue extracts of, e.g. chili (Capsicum annum) (Teixeira FR., 2006),
Chinese gall (Rhus chinensis) (Yuan GQ. et al., 2012), clove (Szygyum
aromaticum) (Amorim EPD., 2011), cole (Brassica sp.) (Arthy JR. et al., 2005),
eggplant (Solanum melongena), (Almeida HO. et al., 2007), eucalyptus
(Eucalyptus globules) (Paret ML. et al., 2010), geranium (Geranium
carolinianum) (Ooshiro A. et al., 2004), guava (Psidium guajava and P.
quineense) (Acharya S and Srivastava RC., 2009), hinoki (Chamaecyparis
obtusa) (Yu JQ and Komada H. Hinoki., 1999), Japanese cedar (Cryptomeria
japonica) (Hwang YH. et al., 2005), lemongrass (Cimbopogon citratus) (Paret
ML. et al., 2010), marigold (Tagetes patula) (Terblanche J, de Villiers DA. Et al.,
1998), neem (Azadirachta indica) (Pontes ND. et al., 2011), palmarosa
(Cimbopogon martint) (Paret ML. et al., 2010), pigeon pea (Cajanus cajan), sunn
hemp (Crotalaria juncea) (Cardoso SC. et al., 2006), tamarillo (Cyphomandra
betacea) (Ordóñez RM. et al 2006), thyme (Thymus spp.) (Pradhanang PM. et
al., 2003), wood wax tree (Toxicodendron xylvestre) (Yuan GQ. et al., 2012), and
worm killer (Aristolochia bracteata) (Shimpi SR et al., 2005). The possible
mechanisms of action of the plant residues are mainly considered to be
antimicrobial activities, followed by the indirect suppression of the pathogen
during improved physical, chemical, and biological soil properties (Cardoso SC.
et al., 2006).

Animal Waste
Controlling Bacterial
Wilt

Although a lot of studies have already reported that animal waste controls plant
disease, few have shown that animal waste suppresses bacterial wilt disease.
For example, the use of pig slurry decreased the population of R. solanacearum
in the soil (Gorissen A et al., 2004). The mechanisms underlying the enhanced
decline of the population of this pathogen and disease suppression remains
unclear; though, shifts in bacterial community profiles have been proposed.
Another study recommended that the suppression of bacterial wilt by poultry and
farmyard manure were related to higher microbial activity and higher numbers of
cultural bacteria and fungi (Islam TMD, Toyota K., 2004). In that study, a lower
disease index was connected to the poor survival of the pathogen. However,
limitations are linked with the wide use of organic waste. Janvier et al. (2007)
have proved that the main key-points for the efficiency of organic materials in the
inhibition of plant pathogens normally depend on: (i) the plant-pathogen
combination, (ii) the rate of application, (iii) the nature or type of amendment and
finally (iv) the degree of maturity of the decomposition stage of the crop residues.
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Simple organic
compounds controlling
bacterial wilt

The suppression mechanism was not attributed to the stimulation of systemic
resistance, but to shifts in the soil microbial community structure that led to the
more rapid death of the pathogen (Posas MB and Toyota K., 2007). Protection of
groundnut against R. solanacearum carried out through a riboflavin induced
series of defense responses and secondary metabolism in cell suspensions (Liu
F et al., 2010). DL-3-aminobutyric acid (DABA) also decreased that of catalase
but increased the polyphenol oxidase activity in groundnut plants, suggesting the
induction of resistance to bacterial wilt in the tomato crops (Hassan MAE and
Abo-Elyousr KAM., 2013). Another study showed that methyl gallate exhibited
burly bactericidal effects on R. solanacearum (Fan W-W et al., 2014).

Physical methods,
including biofumigation

A number of physical control methods, e.g. soil solarization and warm water
treatments, have proved to be effective against R. solanacearum. Another study
reported that rhizome solarization on ginger seeds for 2 to 4 h reduced bacterial
wilt through 90–100% 120 d after planting, and that ginger seeds sterilized with
discontinuous microwaving (10-s pulses) at 45°C reduced the incidence of wilt
by 100% (Kumar P, Sood AK., 2005). Microbial respiration, soil pH, potassium
(K), sodium (Na), boron (B), zinc contents and microbial biomass are reduced by
soil solarization and did not significantly affect on other soil chemical properties.
A heat treatment at either 45°C for 2 d or a minimum temperature of 60°C for 2 h
of the infected soil prior to groundnut planting reduced the total bacterial
population by 60–97%, that of Ralstonia sp. from 2 to 7×108 cfu g−1 to 0 to 115
cfu g−1, and the incidence of bacterial wilt by 50–75% (Vongkiatkajorn J, Thepa
S., 2007).

Cultural practices
Cultivar resistant

The growth of cultivars that are resistant to bacterial wilt is considered to be the
environmentally friendly, most economical and effective method of disease
control. Breeding for resistance to bacterial wilt has been concentrated on crops
of wide economic importance such as the groundnut, tomato, potato, tobacco,
eggplant, pepper and have commonly been influenced by factors such as the
availability of resistance sources, their diversity, genetic linkage between
resistance, and other agronomic qualities, differentiation and variability in
pathogenic strains, the mechanism of plant-pathogen interactions, and breeding
or selection methodology (Boshou L., 2005).
For instance, the Arabidopsis NPR1 (non-expresser of PR genes) gene was
introduced into a tomato cultivar which reduced the incidence of wilt by 70%
approximately 28 days after the inoculation and enhanced resistance to bacterial
wilt (Lin WC et al., 2004). Somatic hybrids which were produced with the
electrical fusion of mesophyll protoplasts of S. melongena cv. Dourga and two
groups of S. aethiopicum were found to be tolerant to R. solanacearum (Fock I
et al., 2000). Prior et al. (Prior P et al., 1996) showed that resistant plants were
deeply invaded by R. solanacearum without displaying wilt symptoms. A
proteomic approach was used to illuminate molecular interactions in the cell
walls of resistant and sensitive plants inoculated with R. solanacearum (Dahal D
et al., 2010). Resistance to bacterial wilt in so many crops is negatively
connected with quality and yield. Thus, the release of resistant cultivars may be
poor because of other agronomic qualities and are not widely accepted by
farmers or consumers.

Crop rotation,
multi-cropping

The benefits of crop rotation are maintenance of the soil structure and organic
matter, and a reduction in soil erosion that is often connected with continuous
row crops (Janvier C et al., 2007). Though continuous cropping with the same
susceptible host plant will lead to the establishment of specific plant pathogenic
populations, crop rotation avoids this detrimental effect and is often associated
with a reduction in plant diseases caused by soil-borne pathogens (Janvier C et
al., 2007). In an example of multi-cropping, Yu et al. (Yu JQ., 1999) have
reported the suppression mechanisms because the root exudates of Chinese
chive which may prevent R. solanacearum from infecting tomato plants of
Chinese chive (Allium tuberosum), finally reduced the incidence of bacterial wilt
in the groundnut (approximately 60%).
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Soil amendment Previous studies exposed that the application of fertilizers reduced the incidence

of bacterial wilt. Calcium (Ca) is the most familiar fertilizer to suppress disease.
In the stems of the groundnut plants increased Ca concentrations reduced the
severity of bacterial wilt as well as the population of R. solanacearum (Yamazaki
H et al., 2000). Lemaga et al. (2005) reported that the application of nitrogen (N)
+ phosphorus (P) + K and N + P (application rate of each fertilizer = 100 kg ha−1)
reduced bacterial wilt by 29% to 50%. Higher soil pH and Ca content were also
role a key factors in the control of bacterial wilt by the rock dust amendment.
Many elements in the cell walls influence the susceptibility or resistance of plants
to infections with pathogens and silicon is considered to be a beneficial element
for plants (Epstein E., 1999). Kiirika et al. (2013) reported that the combined
application of silicon and chitosan reduced the incidence of bacterial wilt in the
groundnut by inducing resistance. Silicon and chitosan exhibited synergistic
effects against the disease (Integrated Pest Management (IPM).

Result and Discussion Hyakumachi et al. (2013) recently exposed that B. thuringiensis, a well-known
bioinsecticide-producing bacterium, induced defense-related genes, such as
acidic chitinase, PR-1 and beta-1,3-glucanase showed resistance against a
direct inoculation with R. solanacearum. The expression of numerous salicylic
acid-responsive defense-related genes was confirmed to be specifically induced
(Takahashi H. et al., 2014), and also that suppression by B. thuringiensis may
differ from the induced systemic resistance (ISR) elicited by several plant
growth-promoting rhizobacteria (PGPR), in which jasmonic acid and
ethylene-dependent signaling pathways mediate plant resistance to pathogens
(Takahashi H. et al., 2014). Successful trials with BCA in the field are introduced
in Table.

Table To control the bacterial wilt diseases caused by Ralstonia solanacearum
following are the various bio-control agents that have been tested in the field:-

Name of
Microorganisms

Methods of
Inoculation and
application rate Mechanisms

BCE
(%)

Yield
Produc
tion* Ref.

1. Bacillus
amyloliquefacien
s SQR-7 and
SQR-101 and
Bacillus
methylotrophicus
SQR-29

Pouring, 6.8×1010

cfu plant−1 (SQR-7),
7.5×1010 cfu plant−1

(SQR-101),
8.2×1010 cfu plant−1

(SQR-7)

Production
of indole
acetic acid
and
siderophor
es

18–60
% in

tobacco

25–38% Yuan
S. et
al.,
2014

2. Ralstonia
pickettii QL-A6

Stem injection, 10
μL of 107 CFU mL−1

Competitio
n

73% in
the
tomato

NA Wei
Z. et
al.,
2013

3.
Pseudomonas
monteilii (A) +
Glomus
fasciculatum (B)

Stem cuttings were
dipped in A (9.1×108

mL−1), B (53
infective
propagules) was
added to each
cutting, and A was
then poured again

Increased
plant nutrient
uptake (N, P,
K) and
reduced the
pathogen
population

56–75
% in
herbs
(Coleus
forskohl
i)

54% Singh
R. et
al.,
2013

4. Brevibacillus
brevis L-25 +
Streptomyces
roche L-9 +
organic fertilizer

Mixed with soil at a
density of 7.3×107

(L-25) and 5.0×105

(L-9) cfu g−1 of soil

Decreased
root
colonizatio
n by the
pathogen

30–95
% in
tobacco

87–1
00%

Liu Y.
et al.,
2013
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5. Bacillus
amyloliquefacie
ns + bio-organic
fertilizer (BIO23)
B. subtilis +
bio-organic
fertilizer (BIO36)

Mixed with soil at a
density of 5.5×106

(BIO23) and
7.0×106 (BIO36) cfu
g−1 of soil

Plant
growth
promotion

58–66
% in
the
potato

64–6
5%

Ding
C. et
al.,
2013

6. Bacillus sp.
(RCh6)
Pseudomonas
mallei (RBG4)

3×108 cfu g−1 (talc
formulation). Leftover
suspension was
poured around the
root zone of the
seedling (50 mL
plant−1)

Production
of inhibitory
compound
s and
siderophor
es

81% in
the
eggplant

60–9
0%

Rame
sh R.
and
Phad
ke
GS.,
2012

7. Trichoderma
viride (A),
Bacillus subtilis
(B),
Azotobacter
chroococcum
(C), Glomus
fasciculatum
(D), P.
fluorescens (E)

D (53 infective
propagules) was
added to each stem
cutting that was
dipped in A (1.2×106

CFU mL−1), B
(1.8×108 CFU mL−1),
C (2.3×107 CFU
mL−1), and E (2.5×108

CFU mL−1).In a
sample of 200 gm
soil, a total of 5 mL of
A, B, C, and E was
then poured.

Reduced
population
of R.
solanacear
um and
competition
for nutrient
uptake
(NPK)

7–43%
in herbs
(Coleus
forskohlii
)

159–
227%

Singh
R. et
al.,
2012

8. B.
amyloliquefacie
ns QL-5, QL-18
+ organic
fertilizer

Mixed with soil at a
density of 1×107

(QL-5) or 1×107

(QL-18) cfu g−1 of
soil

Decreased
root
colonizatio
n by the
pathogen

17–87
% in
the
tomato

NA Wei
Z. et
al
2011

9. B.
amyloliquefacie
ns Bg-C31

Poured 10 mL of
bacterial
suspension plant−1

(potato dextrose
broth culture).

Production
of
antimicrobi
al proteins

60–80
% in
Capsic
um

NA Hu
HQ.
et al.,
2010

10.
Acinetobacter
sp. Xa6,
Enterobacter sp.
Xy3

Poured 20 mL of the
bacterial
suspension (1×109

cells mL−1) plant−1 or
seedling roots were
soaked in the
bacterial
suspension.

Rhizocomp
etence and
root
colonizatio
n

57–67
% in
the
tomato

32–4
1%

Xue
QY. et
al.,
2009

11. B.
vallismortis
ExTN-1

Bacterial
suspension was
mixed into an
organic fertilizer
(106 cfu mL−1) and
poured onto soil.

Induction
of systemic
resistance

48–49
% in
the
tomato

17% Than
h D.T.
et al.,
2009
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12. Glomus
mossease

A total of 30 g of the
inoculum (650–700

spores of G.
mossease 100 g−1

soil) was added to a
planting hole.

Competition
for nutrients

and
decreased
pathogen
population

25% in
the

tomato

16% Taiwo
LB. et
al 2007

BCE: biological control efficacy, NA: not applicable, Yield*: increase in
yield
Some fungal BCAs also have been reported to control bacterial wilt. One another
fungal species, Pythium oligandrum, has the efficiency to control bacterial wilt
disease, in which cell wall proteins may play an significant role in the stimulation
of resistance to R. solanacearum, along with activation of the
ethylene-dependent signaling pathway (Hase S., 2006). An antibiotic ingredient
“shiitake mycelia leachate” was suppressed the growth of R. solanacearum, in
vitro (Pacumbaba RP., 1999). In addition, three endomycorrhizal fungi
(Gigaspora margarita, Glomus mosseae, and Scutellospora sp.) (Tahat MM. et
al., 2012) and the lichen Parmotrema tinctorum (Gomes AT. et al., 2003) have
been recognized as BCAs against R. solanacearum.
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Conclusion Previous studies exposed that the application of fertilizers reduced the incidence
of bacterial wilt. Calcium (Ca) is the most familiar fertilizer to suppress disease.
In the stems of the groundnut plants increased Ca concentrations reduced the
severity of bacterial wilt as well as the population of R. solanacearum (Yamazaki
H et al., 2000). Lemaga et al. (2005) reported that the application of nitrogen (N)
+ phosphorus (P) + K and N + P (application rate of each fertilizer = 100 kg ha−1)
reduced bacterial wilt by 29% to 50%. Higher soil pH and Ca content were also
role a key factors in the control of bacterial wilt by the rock dust amendment.
Many elements in the cell walls influence the susceptibility or resistance of plants
to infections with pathogens and silicon is considered to be a beneficial element
for plants (Epstein E., 1999). Kiirika et al. (2013) reported that the combined
application of silicon and chitosan reduced the incidence of bacterial wilt in the
groundnut by inducing resistance. Silicon and chitosan exhibited synergistic
effects against the disease (Integrated Pest Management (IPM).
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